
1

Numerical method to evaluate the influence of organic solvent absorption on the
conductivity of polymeric composites

Antonio Carrillo1, Ignacio R. Martín-Domínguez1, and Alfredo Márquez1*

Centro de Investigación en Materiales Avanzados, S. C. (CIMAV) Miguel de Cervantes
120, Complejo Industrial Chihuahua 31109 Chihuahua, Chih., México.

Abstract
A theoretical analysis that describes the change on electric properties of polymeric

composites, filled with conductive aggregates, during organic solvent absorption processes is
presented in this work. This methodology takes into account the moving boundaries typical of
this phenomena; requiring simple numerical procedures to be solved. The results show no
numerical instabilities during the calculation process. The obtained results correlate very close
to the available experimental data; therefore could be very useful for chemical sensor design.

1. Introduction
The relationship between electrical resistivity and the volumetric fraction of conductive

aggregates into a polymeric conductor composite, has been widely analyzed both theoretically
and empirically [1-4], being the percolation theory the most accepted model to describe this
phenomenon [5-12]. However, this relationship has always been studied on homogeneous
composites, where distribution of the conductive fraction inside the composite is uniform. There
are, nevertheless, a wide range of phenomena where the conductive fraction varies significantly
with position, specially when gaseous or liquid solvents are being absorbed by the polymer
matrix. This phenomenon has an important application on designing chemical sensors and
artificial odor detection systems. In these devises the solvent presence is been detected when
electric resistance of the composite changes due to the absorption of the solvent by the
polymeric matrix. On previous works [13-15] a number of authors have been found that when a
sensor, tailored with a polymer composite chemically compatible with the solvent to be
monitored, is brought in contact with this solvent; a variation on the electric current circulating
through the sensor is observed and, at the same time, an increase in volume occurred. This
sample swelling occurs because the composite matrix absorbs the solvent, and consequently
the volumetric fraction of the conductive aggregates changes; as a result the electric resistivity
of the composite also changes [13-15], diminishing, if the solvent is a good electric conductor, or
increasing, if it is a dielectric solvent. It is important to note that on this process the electric
resistivity varies across the transversal section of the composite, because of the solvent
diffusion. A model that describes such a phenomenon is presented on this work, for polymeric
composites filled with conductive particles. The aim of the model is to connect the percolation
theory with the solvent diffusion equation in amorphous polymers. Also, it must be mentioned
that in this first paper we have restrict the analysis to dielectric solvents and polymers, however
in a second paper we will generalize this approach to any arbitrary components. Finally, it is
important stress out that to our knowledge no similar analysis has been previously reported in
the literature.

2. Analysis
In order to exemplify the method, an axisymmetric geometry was selected to study the

composite behavior. Main reason for this geometry selection is that modern sensors commonly
have such configuration [13-15]. A simplified typical electric circuit arrangement, for the
mentioned sample, is presented on Figure 1. On this configuration, the solvent diffusion process
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into the composite gradually changes its electric conductivity, following the solvent
concentration profile along the sample radius over a time period. In order to model the previous
situation, the following hypotheses were considered: a) Solvent diffusion process on the sample
is one-dimensional, taking place only along the radial direction (axial diffusion is neglected); b)
The polymeric matrix and the organic solvents are dielectric materials; c) Solvents are absorbed
only by the polymeric matrix, and not by the conductive aggregates; d) Solvent diffusion into the
composite follows Fick’s Law (this is especially true on elastomeric matrix composites and
copolymers).

Using those hypotheses it is possible to predict, at constant voltage, the variation of the
electric current on the composite during the solvent diffusion process.  First of all, Ohm’s Law
can be written as:
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where I(t) and ρm(t) are the instantaneous electric current on the sample and local composite
resistivity. A(t), a(t) and l are the transversal section, external radius and longitude of the
sample. Finally E is the applied voltage, which remains constant.

Eq. 1 can be normalized as:
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where r is the radial coordinate and variables indexed with zero represent the state of the
composite before the solvent gets in touch with it. In order to calculate the electric resistivity, it is
necessary to know its relationship with the solvent volumetric fraction. This can be done by
modifying a model proposed by McLachlang [11], which describes the conductive composite
electric resistance change as a function of its conductive and dielectric volumetric fractions. This
equation, which is known as the generalized effective media (GEM) model, integrates two
morphology parameters: fC (the critical percolative value of the conductive fraction) and q (an
experimental exponent). Previous equation can be written as:
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where ρH , ρL  and ρm  are the resistivities of the high and low resistive components and the
composite resistivity respectively, f is the conductive fraction and  fR is given by the following
expression:
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Solving Eq. 3 for ρm , we have:

ρm  = {½ [B + ( B2 + 4C)1/2]}-q (5)
where;

B = fR -1 [(f fR+ f –1)ρH 
–1/q   - (f fR+ f – fR )ρL

–1/q],

C =  fR -1 (ρL  ρH) 
–1/q (6)
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The positive sign of Eq. 5 is used to describe the behavior of a composite with larger
conductive fraction than that of the percolation one, while the negative one is used for those
with a smaller fraction [11,12]. Therefore, in this work we will use only the positive sign of the
previous equation.

It is important to mention that the GEM equation was deduced for a composite of only
two components. However, we can use it if considering the following approximation; since the
polymer matrix and organic solvents are both dielectrics with a resistivity of the same order of
magnitude and substantially different from that of the conductive fraction, we may treat both
phases (polymer and solvent) as an unique phase. Therefore, the sum of the polymeric matrix
fraction, fP, plus the solvent fraction, fS, will be named as the non conductive fraction in Eqs. 5
and 6. This last approximation is possible because the resistivity is one of the physical
magnitudes that present the broader range of values. Indeed, the resistivity of common organic
substances varies typically between 1016 to 108 ohms-cm, while the conductive aggregates have
conductivities between 10–1 to 10–7 ohms-cm.

To evaluate f(r,t) on each location as function of time, the following relation was
considered:
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where VT(r,t) is the local volume as a function of time.
 In order to determine the evolution of the solvent volumetric fraction fS,(r,t) it is possible

to use Fick’s Law14.

),(D),( 2 trf
t

trf
S

S ∇=
∂

∂
(8)

where D is the diffusion coefficient, related with the volumetric fraction. This last parameter, in
the case of polymers, could become concentration dependent for large swelling levels; however
in the present study we consider it as a constant.  Taking into account the hypothesis number I,
this last expression may be written as;
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 To solve this equation, the following initial and boundary conditions apply:
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where fSmax is the maximal solvent volumetric fraction that the composite is able to absorb. There
are two solutions of Eq. 9, subjected to conditions (10); the first one is  valid for large times, and
the second one for short times [16].  The first one has the following form:
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where J0  and  J1  are the first class Bessel functions, of zero and first order  respectively, and αn

are the positive roots of  J0[a(t)αn].  Whereas, the second one has the next structure:
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Using the previous equations it is possible to calculate f (r,t), using the value of fS (r,t) in Eq. 7.  
Finally, to evaluate the increment of the filament external radius the following relation was
deduced:
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It is evident that it is not possible to get an explicit expression for a(t) using equations 11, 12 and
13, however it is possible to evaluate this parameter employing a numerical method.

4. Results and discussion
In order to illustrate the use of this algorithm, experimental data from Márquez et al [14]

and Carrillo [15], was used. This composite was elaborated using Polybutadiene (PB) as the
polymer matrix. On Figure 3, it is shown its electric resistance evolution when prepared using
different volumetric fractions of carbon particles. It can be noticed that the composite has a
percolation composition of around 0.14 v/v of carbon particles. The parameters of Eqs. 4-6 were
calculated using this correlation. Subsequently, concentration profiles were evaluated for five
different hypothetical solvents, as a function of the radial coordinate at, different times. Figure 1
show the obtained results for a diffusion coefficient of D = 9x10–6 cm2/s. The first curve on the
graph corresponds to the first minute of contact with this solvent, while the subsequent ones are
five minutes apart of each other. It is relevant to notice on these curves, how the external radius
a(t) increases as a function of time, as dictated by Eq. 13. It also can be noticed that the line
corresponding to the first minute presents some irregularities, due to the selection of the
particular solution for the diffusion equation (Eq. 11). Indeed, when both solutions (Eq. 11 and
12) are used these irregularities are vanished.

Figure 7 illustrates how the electric current curve falls with the solvent contact time, for
each different solvent. It can be noticed that, in general, the current diminishes rapidly with time,
at the exception of the first solvent, which is in good agreement with experimental observations
[4, 7, 10, 14, 15].

Finally, it is important to mention that this methodology may allow a more precise sensor
design, based only on easy obtainable laboratory data.

5. Conclusion
A methodology that describes the change on electric properties of polymeric composites,

during solvent diffusion processes, is presented in this work. The equations that result from this
methodology requires simple numerical procedures to be solved, and no numerical instability
was observed during the process. The obtained results correlate very close the available
experimental data, and therefore could be very useful for chemical sensor design.
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